

Course Specifications: Heat and Mass Transfer MPE271

1. Basic Information

Program Tile	Biomedical Engineering
Department offering the Program	Biomedical Engineering
Department Responsible for the Course	Mechanical power engineering
Course Title	Heat and mass transfer
Course Code	MPE271
Year/ Level	Level 200
Credit Hours	3
Specialization	Major
Requirements	MPE172
Authorization data of course specification	

Teaching Hours	Credit	Lectures	Tutorial	Practical
	3	2	1	1.5

2. Course Aims:

No.	Aims	
1	Apply knowledge of engineering concepts to solve fundamental thermal problems.	
6	Acquire modern technical awareness and identify patents, regulatory environment, and quality control issues of thethermal problems.	

3. Intended Learning Outcomes (ILOs):

A. Knowledge and Understanding:

No.	Knowledge and Understanding	
٨	Identify the concepts and theories of mathematics and sciences, concerning the thermal systems	
A_1	related to the heat and mass transfer problems.	

B. Intellectual Skills

No.	Intellectual Skills	
\mathbf{B}_1	Select appropriate mathematical and computer-based methods for modeling and analyzing heat an mass transfer problems.	
B_2	Analyze appropriate solutions for heat and mass transfer problems based on analytical thinking.	

C. Professional Skills

	1 O'CSSIONII SAMS	
No.	Professional Skills	
C_1	Apply integrally knowledge of mathematics, science, information technology, design, business context and engineering practice to solve heat and mass transfer problems.	
C_2	Merge the engineering knowledge, understanding, and feedback in a professional manner to improve the thermal systems and designs like designing a heat exchanger.	

D. General Skills

No.	General Skills	
D_1	Collaborate effectively within multidisciplinary team.	

4. Course Contents:

No.	Topics	
1	Introduction to thermodynamics.	1-2
2	Modes of heat transfer	3-4
3	conduction	
4	convection, radiation	7,9
5	Fins	10-11
6	Heat exchangers	
7	Natural convection	14

5. Teaching and Learning Methods:

No.	Teaching Method	
1	Lectures	
2	Case Studies	
3	Discussion Sessions	

6 Teaching and Learning Methods for Disabled Students:

No.	Teaching Method	Reason
-----	-----------------	--------

Course Specifications: Heat and Mass Transfer MPE271

1	Extra discussion sess	ions	To communicate better with them

7. Student Evaluation

7.1 Student Evaluation Methods:

No.	Evaluation Method	ILOs
1	Mid Term Examination	A_1, B_1
2	Semester work	A_1, B_2, C_1, C_2, D_1
3	Final Term Examination	A_1, B_1

7.2 Evaluation Schedule:

No.	Evaluation Method	Weeks		
1	Mid Term Examination	8		
2	Semester work	Every week		
3	Final Term Examination	15		

7.3 Weighting of Evaluations:

No.	Evaluation Method	Weights
1	Mid Term Examination	15%
2	Semester work	35%
3	Final Term Examination	50%
Total		100%

8. List of References

No.	Reference List		
1	Kreith, Frank. "Heat and Mass Transfer Mechanical Engineering Handbook." (1999).		
2	Bergman, Theodore L., Frank P. Incropera, and Adrienne S. Lavine. <i>Fundamentals of heat and mass transfer</i> . John Wiley & Sons, 2011.		
3	.Sissom LE, Pitts D. Schaum's Outline of Heat Transfer, 2nd Edition. McGraw-Hill Education; 2011		
4	Lecture notes.		

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Sound System
5	Wireless Internet

10. Matrix of Knowledge and Skills of the Course:

No.	Topic	Aims	Knowledge & Understanding	Intellectual Skills	Professional Skills	General Skills
1	Introduction to thermodynamics	1	A_1			
2	Modes of heat transfer	1,6	A_1			
3	conduction	1,6	A_1	B_1	C_1	
4	convection, radiation	1	A_1	B_1		
5	Fins	1	A_1	B_1, B_2	C_2	\mathbf{D}_1
6	Heat exchangers	1	A_1	B_1, B_2	C_2	D_1
7	Natural convection	1,6	A_1	\mathbf{B}_1		

Course Coordinator: Dr. Mostafa Ali ElBouz

Head of Department: Assoc. Prof. Hossam Eldeen Salah

Date of Approval